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UPRESA 5012, Université Lyon I-CPE, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France;

and ØNational Technical University of Athens, 9 Iroon Polytechniou Street, Zographou 15773, Greece

Received March 18, 1996; revised October 18, 1996

In this paper, it is shown how the advantages of continuous requirements are met before applying a quantitation method.
regularization (CR) can be exploited to achieve an improved, fully Here, the application of the Cadzow enhancement procedure
automated LPSVD analysis of MRS time-domain data. The main (EP) (8) to MRS data leads to considerable improvements
advantage of CR is its ability to determine the number of spectral (9) . The EP algorithm restores the Hankel structure of the
components even at low signal-to-noise ratios, which suggested its data matrix which results in a reduction of the noise in the
use for in vivo spectroscopy. Estimation of the spectral parameters

reconstructed signal. Recently, a new, improved enhance-is possible. Two alternatives of automated data-analysis schemes
ment procedure (IEP) which minimizes the filtering effectsare thoroughly investigated by means of Monte Carlo studies. The
has been proposed (10) .results suggest the combination of CR for model-order estimation

All of the aforementioned SVD-based methods requirewith other methods for more-accurate parameter estimation. Sev-
eral possible combinations, including those with an improved en- the number of signal components as an input from the user.
hancement procedure and a total-least-squares method for quanti- To achieve fully automatic MRS quantitation, a method that
tation, are discussed. Recommendations are given for spectral automatically and reliably determines the number of signal
analysis, and a new data-analysis protocol which performs signifi- components is needed. In order to be successful for in vivo
cantly better than previously used protocols of the same type is MRS data, this method must be robust even at low signal-
proposed. q 1997 Academic Press to-noise ratios (SNRs). In this context, the application of

the principle of continuous regularization (CR) (11) to the
LPSVD analysis promises important beneficial effects. As

INTRODUCTION shown in (12) , the resulting combined LPSVD(CR) algo-
rithm solves the problem of determining the number of com-
ponents without prior knowledge successfully.Time-domain analysis methods for magnetic resonance

The main interest of the present paper will be directedspectroscopy have experienced considerable development
toward the use of LPSVD(CR) in order to realize a fullyduring the past years (1) . Different time-domain quantita-
automatic LPSVD analysis. It will be shown that the applica-tion methods have been developed to avoid spectral distor-
tion of continuous regularization to LPSVD not only allowstions caused by the Fourier transform of a nonideal FID.
for fully automatic MRS data quantitation, but also reducesSuch characteristics of the FID can be incorporated in the
the number of algorithmic failures and results in more-accu-time-domain model function, which gives rise to more-accu-
rate frequency estimates. By means of extensive Monterate parameter estimates. These methods comprise linear-
Carlo (MC) studies on a simulated signal, the combinedprediction (LP) methods such as linear prediction combined
LPSVD(CR) method is studied with respect to two differentwith singular-value decomposition (LPSVD) (2, 3) , state-
aspects. In the first set of MC studies, we investigate thespace methods such as Hankel Lanczos singular-value de-
performance of LPSVD(CR) as a stand-alone method tocomposition (HLSVD) (4) , methods using total least
determine the correct number of components and find esti-squares (TLS) such as Hankel TLS (HTLS) (5) , the combi-
mates for the spectral parameters. The automatic quantitationnation of TLS with LP (LPTLS) (6, 7) , and others.
of LPSVD(CR) is compared to other LP-based parameterIn addition, preprocessing methods have been proposed

in order to enhance the raw data in such a way that specific estimators that require the number of components as prior
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401CONTINUOUS REGULARIZATION IN ANALYSIS OF MRS DATA

knowledge. Second, we consider combinations of The dimension of the unperturbed problem, i.e., the num-
ber of components K , is reflected in the rank of the matrixLPSVD(CR) with other methods that first enhance the data

and then perform the quantitation. In these combined meth- X . Since the diagonal matrix S has the same rank for noise-
less data, only K singular values are greater than zero. How-ods the most important advantage of continuous regulariza-

tion is exploited; i.e., it is used to estimate the number of ever, in all realistic cases, i.e., in the presence of noise, all
sj are greater than zero. Only if K is known or can be postu-spectral components only.

Furthermore, we also extend the application of lated can all irrelevant noise-related singular values be set
to zero. This operation is referred to as discrete regularizationLPSVD(CR) to the quantitation of a real-world (measured)

in vivo 31P MRS signal. Finally, the capabilities of (DR) (3) .
LPSVD(CR) in terms of fully automated data-analysis pro-

Continuous Regularizationtocols are summarized. All studies were performed using
the magnetic resonance user interface (MRUI) software The question arises how to get a robust least-squares (LS)
package (13) which is available upon request from the au- solution with small norm of Eq. [1] without restricting the
thor (A.vdB.) . problem to a predetermined (known, estimated, or desired)

rank. This situation suggests the introduction of the principle
THEORY of continuous regularization (11, 12) into LPSVD. The ap-

proach of the LPSVD(CR) method consists of the introduc-
For a detailed description of the basics of linear prediction tion of a regularization parameter l. Instead of minimizing

and singular-value decomposition we refer to (1) . Here, we the norm \a\ 2 using the truncation described above, the mini-
only briefly mention the main steps and point out the details mum norm condition can then be explicitly formulated, to-
introduced by continuous regularization. gether with the demand of minimum residual deviation, in

For the LPSVD analysis, a linear relationship between the the form
equidistantly (Dt) sampled data points xn Å x(nDt) in the
time domain is assumed, which may be written as (1) \x 0 Xa\ 2 / l 2\a\ 2

r Minimum. [3]

The two norms exhibit a different behavior with increasingxn Å ∑
M

mÅ1

amxn{m or x Å Xa , [1]
l, which makes its choice difficult and crucial. Hence, the
regularization parameter l has a weighting function between

where x and X represent the data vector and data matrix the desires to minimize each of the norms in Eq. [3] , and
(dimension L 1 M) , respectively. The information about this technique can be regarded as a continuous truncation of
the system in question is contained in the LP coefficients am . the singular values.
A close relationship between the am values and the spectral The regularized LS solution of Eq. [1] now leads to the
parameters exists if the time-domain data can be described formula (L £ M is assumed) (11, 12)
by the following model function (1) ,

al Å VS/
l UHx Å ∑

M

jÅ1

sj

s 2
j / l 2 vj(uH

j x) . [4]
xn Å ∑

K

kÅ1

Akexp( ifk)exp[(ak / ivk)nDt] , [2]

For a suitably chosen l, the disturbing effect of the small
singular values is avoided and a regular noise suppressionwhere K is the number of sinusoids that comprise the signal.

The angular frequencies vk and the damping constants ak õ is performed.
Different strategies for estimating an optimal regulariza-0 which occur in a nonlinear relationship can be extracted

from the roots of the prediction polynomial (1) . Finally, the tion parameter l have been proposed. For our algorithm we
use the discrepancy method (12) . This means that the great-estimation of the amplitudes Ak and phases fk is achieved

by a least-squares fit of the model function to the signal xn est l is determined for which \x 0 Xal\
2 Å s 2 holds, where

s 2 is the variance of the noise. This approach is justified(1) . For MRS signal analysis, this procedure was denoted
LPSVD (3) . since a further increase of l would lead to a loss of spectral

information due to the oversmoothing. A further decreaseThe solution of Eq. [1] can be written using the singular-
value decomposition of the data matrix X , according to a Å of l, on the other side, would result in the inclusion of noise

features in the solution. For all LPSVD(CR) studies in theVS/UHx , where U and V are the orthogonal matrices of the
singular vectors. S is the diagonal matrix of the singular present paper, an accurate and reliable implementation of

the discrepancy method by means of a simplex routine (14)values sj [ j Å 1, . . . , min(L , M)] , and the superscript /

denotes the pseudo-inverse. was used. This routine provides the value of l which mini-
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402 TOTZ ET AL.

mizes the difference between the residual deviation and the of singular values retained to the known rank K , to set the
number of columns M to not greater than K / 1 during theestimated variance of the noise.

Next, the number of spectral components K is determined first iteration. During the second iteration M can be increased
to 2K while keeping the effect of the initial conditions mini-from the distribution of the polynomial roots in the complex

plane. Using backward LP, the K signal-related roots fall mal. Consequently, during the third and subsequent itera-
tions, M can be further increased up to N /2. When M isoutside the unit circle, and the noise-related ones lie inside

(3) . For a reliable separation of signal and noise by this relatively small, two or three iterations can be considered,
rather than one in order to improve performance. For easeprocedure, the improved precision of the LP coefficients

obtained by continuous regularization is necessary because of understanding, the IEP algorithm is outlined below:
Given: N samples xn , n Å 0, . . . , N 0 1 and Mmax differentthe roots of a polynomial of high order are sensitive to

its coefficients. This separation can be further refined by column sizes Mj of iterations
including a number of supposed noise roots in the polyno-

For j Å 1, . . . , Mmaxmial and using a statistical significance test on the estimated
For k Å 1, . . . , njamplitudes. For the studies presented here, the latter has not

been applied. 1. Arrange the N samples xn , n Å 0, . . . , N 0 1 into a Mj

1 (N 0 Mj / 1) Hankel matrix H , with x0 , . . . , xN0p in
TLS Methods and Improved Enhancement Procedure its first row and xN0p , . . . , xN01 in its last column.

2. Compute the SVD
In the first set of MC studies, LPSVD(CR) is compared

with the common LPSVD with discrete regularization (3 ) ,
the combination of EP with LPSVD (9 ) , and the combina- H Å ∑

M j

iÅ1

siui£
H
i , s1 § rrr § sMj

§ 0, [5]
tion of TLS with LP (LPTLS) (6, 7 ) . The essential differ-
ence between LPSVD and LPTLS is that, in the latter
algorithm, the SVD of the matrix [X , x ] instead of X is and truncate to rank K õ Mj :
truncated to rank K and the minimum-norm total-least-
squares solution is calculated. Although LPSVD,

HK Å ∑
K

iÅ1

siui£
H
i . [6]EPLPSVD, and LPTLS are regarded as black-box meth-

ods, they use the information about the number of spectral
components as prior knowledge.

3. Replace xn by x̂n , obtained by arithmetic averaging alongFor the second set of MC studies, the previously suggested
the n th cross diagonal of the non-Hankel matrix HK formethod of LPSVD(CR) combined with EPLPSVD (12) is
all n Å 0, . . . , N 0 1.compared with two implementations of the new combination

of LPSVD(CR), IEP (10) , and HTLS (5) . The new combi-
A further improvement can in some cases be obtainednation carries out quantitation by means of the state-space-

by replacing the first Mj01 samples affected by the initialbased method HTLS. This basically amounts to truncating
conditions by the corresponding samples of the original sig-the SVD of the matrix [X , x] to rank K (as in LPTLS) and
nal. These are only slightly contaminated by noise and canthen using the first K columns of the matrix of the left
be used as accurate estimates of the corresponding noise-freesingular vectors to compute the total-least-squares solution.
samples. This alternative algorithm, denoted by IEP(Re), isIt has been shown (5) that, in particular, the damping factor
outlined as the IEP algorithm, provided that the third stepestimates at low SNR improve substantially, thereby also
of the upper iteration is performed only for n Å Mj , . . . ,leading to improved accuracy of amplitude and phase esti-
N 0 1. The first implementation of the new combinationmates. The recently proposed IEP method (10) exploits the
LPSVD(CR), IEP, and HTLS uses no sample replacement,filtering interpretation of SVD-based iterative signal en-
whereas the sample replacement (Re) was applied in thehancement algorithms to further improve their performance.
second combination LPSVD(CR), IEP(Re), and HTLS.An investigation of the effect of initial conditions in the

EP procedure (8) on the enhanced signal leads to the conclu-
METHODSsion that special care must be taken with regard to both the

size L 1 M of the signal Hankel matrix in which the N
samples are arranged and the number and size of singular For the investigation of the performance of LPSVD(CR)

in comparison with other SVD-based methods, two sets ofvalues which are retained during each iteration. It was ob-
served (10) that the effect of the initial conditions is much Monte Carlo studies were performed. These MC studies

were carried out on a simulation signal that was designedmore important during the first iterations of the enhancement
procedure. Therefore, it is advised, after fixing the number in order to represent an in vivo MRS signal as closely as
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403CONTINUOUS REGULARIZATION IN ANALYSIS OF MRS DATA

TABLE 1 TABLE 2
Simulation Parameters, Based on the Fit of an in Vivo 31P MRS Combinations of Methods for the Second Set of Our MC Studies

Signal: Frequencies vk , Damping Factors ak , Amplitudes Ak , and
Rank Data ParameterPhases fk of the 11 Components

Combination determination enhancement estimation

Ak

NewComponent vk/2p ak [arbitrary fk

implementation 1 LPSVD(CR) IEP(Re) HTLSk [kHz] [kHz] units] [degrees] Comment
New

implementation 2 LPSVD(CR) IEP HTLS1 00.086 0.050 75 135 b-ATP
Diop et al. (12) LPSVD(CR) Cadzow EP LPSVD(DR)2 00.070 0.050 150 135 b-ATP

(one iteration)3 00.054 0.050 75 135 b-ATP
4 0.152 0.050 150 135 a-ATP
5 0.168 0.050 150 135 a-ATP
6 0.292 0.050 150 135 g-ATP
7 0.308 0.050 150 135 g-ATP For each noise level, a set of 300 noisy signals was ob-
8 0.360 0.025 150 135 PCr tained by adding different versions of a white Gaussian noise
9 0.440 0.286 1400 135 PDE

with standard deviation s to the noiseless simulated signal.10 0.490 0.025 60 135 Pi

Four different noise levels (s Å 10, 15, 20, 25) were chosen11 0.530 0.200 500 135 PME
to represent in vivo conditions, including high noise levels

Note. The last column identifies each component. where the SVD-based methods started to break down. All
simulated signals in the 4 1 300 Monte Carlo set contained
256 complex data points.

The first set of MC studies was carried out in order topossible. The parameters (see Table 1) used to synthesize
evaluate the accuracy of the spectral-parameter estimates ofthe simulated noiseless FID were taken from an accurate
all 11 components obtained by LPSVD(CR) and other LP-VARPRO analysis, including the application of biochemical
based methods. This investigation comprised LPSVD(CR)prior knowledge about multiplet splittings, of an in vivo
as well as LPSVD with (discrete) truncation of the singular31P MRS FID from human brain (15) . The corresponding
values [LPSVD(DR)] (3) , LPSVD preceded by the Cad-spectrum displays specific problems such as the closely over-
zow EP (9) with one iteration (EPLPSVD), and the linear-lapping multiplets from adenosine triphosphate (ATP) and
prediction total-least-squares (LPTLS) method (6, 7) .the narrow inorganic phosphate (Pi) peak wedged between
These comparative studies were not performed with respectthe broad phosphomonoester (PME) and the very broad
to rank estimation but in terms of parameter accuracy. There-phosphodiester (PDE) peaks (see Fig. 1) .
fore, for all methods other than LPSVD(CR), the known
order of the simulation (11) was given as prior knowledge.
In all fits, 256 complex data points arranged in nearly square
matrices of size 129 1 128 were used.

As a criterion for the determination of successful runs,
we used the frequency resolution. A failure occurs if not
all 11 peaks are resolved within specified intervals lying
symmetrically around the exact frequencies. The half-widths
of these intervals are 8.6, 7.3, 8.7, 3.2, 3.2, 3.5, 3.6, 0.7, 5.6,
2.4, and 7.8 Hz, respectively. These values are derived from
the Cramer–Rao lower bounds on the frequencies at that
noise standard deviation where the two intervals of two
neighboring peaks in the triplet touch each other.

Second, a thorough investigation of the combination of
different methods was performed. The common structure of
all these combinations consists of rank determination, data
enhancement, and parameter estimation (see Table 2).
LPSVD(CR)/ EPLPSVD, as well as the new combinations
LPSVD(CR) / IEP / HTLS and LPSVD(CR) / IEP(Re)
/ HTLS, first use continuous regularization to determineFIG. 1. Phased spectrum obtained after Fourier transform of the simu-
the number of components (rank). Then EP (one iteration),lated 31P signal with peak labels (noise added with standard deviation s Å

15). The original signal was acquired from a human brain. IEP, or IEP(Re) is used to enhance the data, and finally
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404 TOTZ ET AL.

of the theoretically achievable accuracy. Because of the ex-
clusion of unsuccessful runs, the calculated RMSE on certain
parameters may drop below that theoretical limit.

Here a representative selection of the results is shown,
focusing on those peaks of the spectrum which are most
difficult to resolve. These are the components 1 to 3 (b-
ATP triplet) and, because of its large damping factor, peak
9 (PDE).

Performance of the LP Parameter Estimation Methods

As follows from Fig. 2, LPSVD(CR) has the highest
percentage of successful runs at all noise levels which is
equivalent to the lowest failure rate. At noise level 15, there
are already a few cases where not all 11 components are
found correctly by LPSVD(DR), EPLPSVD, and LPTLS,
whereas LPSVD(CR) produces no failure. For noise levels
20 and 25 the difference in the failure rates becomes moreFIG. 2. MC study 1: Percentage of successful runs versus the noise
significant. These results were obtained even thoughstandard deviation s for LPSVD(CR), LPSVD, EPLPSVD (one iteration),

and LPTLS. LPSVD(CR) must perform rank determination and parame-
ter estimation, whereas the order of the simulation (11) was
given as prior knowledge to all other methods. It was ob-
served that the occurrence of a failure is always becauseparameter estimation is performed by means of common
the triplet is not resolved (mostly only two components areLPSVD or HTLS. The IEP procedure is carried out twice
found). In these cases LPSVD(CR) detects only 10 (oron a Hankel matrix of size 11 1 246 (n1 Å 2 and M1 Å even 9) peaks, while the other methods include additional11), twice on a 20 1 237 matrix, twice on a 30 1 227
noise peaks in the fit.matrix, once on a 40 1 217 matrix, and once on an almost

In terms of parameter estimation, LPSVD(CR) exhibitssquare 128 1 129 matrix. For IEP(Re), the first 11, 19, 29,
a lower RMSE on the frequency and phase estimates, but39, and 127 affected samples of the signal, respectively,
not on the estimated amplitudes and dampings (Figs. 3 to 6).were replaced by their original values. The same specifica-
It can also be observed that LPSVD(CR) generally shows ations with respect to the number of data points and matrix
larger bias (see Fig. 7) , which is an inherent property ofsize as for the first set of studies were taken. Only those

data combinations for which LPSVD(CR) had determined
all components correctly within the specified frequency in-
tervals were subjected to the following steps of the combina-
tion. After quantitation the frequency criterion was again
applied, in the same manner as for the first set.

The MC studies were realized by means of the MRUI
software package developed as part of an EU research proj-
ect (13) .

Finally, LPSVD(CR) was applied to a real-world in vivo
31P signal from a human calf muscle, recorded at 1.5 Tesla
using a surface coil.

RESULTS

The results of our MC studies are presented in terms of
the percentage of successful runs and the root-mean-square
error (RMSE) and the bias of the parameter estimates. These
statistical quantities were estimated by computing their cor-
responding sample values (16) and are plotted against the
noise standard deviation s. In the graphs, the solid line al- FIG. 3. MC study 1: RMSE frequency for peak 1 of the simulated 31P

signal for LPSVD(CR), LPSVD, EPLPSVD (one iteration), and LPTLS.ways represents the Cramer–Rao lower bounds as a measure
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405CONTINUOUS REGULARIZATION IN ANALYSIS OF MRS DATA

FIG. 4. MC study 1: RMSE amplitude for peak 1 of the simulated 31P FIG. 6. MC study 1: RMSE phase for peak 1 of the simulated 31P signal
for LPSVD(CR), LPSVD, EPLPSVD (one iteration), and LPTLS.signal for LPSVD(CR), LPSVD, EPLPSVD (one iteration), and LPTLS.

Cramer–Rao lower bounds] . These findings apply to allregularization methods. This increase in the bias as com-
frequency estimates of this triplet and both ATP doublets.pared to other methods is accepted because the variance of
For a separated peak, such as the phosphocreatine (PCr)the parameter estimates is decreased simultaneously. This
peak, the estimates obtained by all methods are very closeadvantageous effect of the regularization technique leads to
to each other. On the other hand, for the PDE peak with itsa desired reduction of the RMSE.
large damping, the RMSE of the frequency for EPLPSVDThe RMSE on the parameter estimates for the b-ATP
and LPTLS is slightly smaller than that for LPSVD(CR)triplet as shown in Figs. 3 to 6 (for one representative com-
(not shown here) . This can probably be attributed to theponent of the triplet) demonstrates that the RMSEs for fre-
fact that the estimated signal pole is dominated by the damp-quency and phase benefit from the use of continuous regular-
ing factor.ization [i.e., the values for LPSVD(CR) are closest to the

FIG. 7. MC study 1: Bias amplitude for peak 1 of the simulated 31P
signal for LPSVD(CR), LPSVD, EPLPSVD (one iteration), and LPTLSFIG. 5. MC study 1: RMSE damping factor for peak 2 of the simulated

31P signal for LPSVD(CR), LPSVD, EPLPSVD (one iteration), and (true value: 75). The results for peak 3 are very similar whereas for peak
2 a positive bias was obtained for all LP-based methods.LPTLS.
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enabling automatic spectral quantitation. The application of
LPSVD(CR) to our simulation example results in a reduced
failure rate for correctly estimating all 11 frequencies. Pa-
rameter estimation for signals containing multiplets and
overlapping peaks is possible as well. The parameter accu-
racy is different for frequencies and phases on the one hand
and amplitudes and dampings on the other. That is, for the
frequency and phase estimates, but not for amplitudes and
dampings, we obtained the lowest RMSE with
LPSVD(CR). The parameter estimates of the PDE peak
showed a different behavior, which may indicate a depen-
dence on the peak type (value of damping factor) . These
findings suggest a combination of LPSVD(CR) with other
methods for more accurate parameter estimation in every
case.

Performance of Automatic Combinations
FIG. 8. MC study 2: Percentage of successful runs versus the noise

standard deviation s for the methods mentioned in Table 2. Figure 8 shows the percentage of successful runs for the
two implementations of the new combination which are
LPSVD(CR) / IEP / HTLS and LPSVD(CR) / IEP(Re)
/HTLS in comparison to the previously published combina-Concerning the phases (see Fig. 6 for the phase of peak

1), the same assertions as for the frequencies hold. Again tion consisting of LPSVD(CR) / EPLPSVD (12) (see Ta-
ble 1) and LPSVD(CR) alone. It is evident that both of thefor all peaks, except the PDE and Pi peaks, LPSVD(CR)

yields the lowest value for the RMSE (which for the PCr new analysis schemes have fewer failures at every noise
level than the previously suggested combinationpeak is close to the values obtained by all other methods

again) . Moreover, for the PDE and Pi peaks, the phase esti- LPSVD(CR) / EPLPSVD. For comparison, the values for
LPSVD(CR) alone are also displayed, showing an evenmates obtained by LPSVD(CR) also show a slightly larger

RMSE than the estimates obtained by EPLPSVD, LPTLS, lower failure rate than both the new combinations. This must
be considered the trade-off for more accurate parameter esti-and LPSVD.

As shown in Fig. 4, for the amplitudes (i.e., the integrated mates. The first source of failures [LPSVD(CR) not finding
all 11 components in the specified frequency intervals] isarea under the peaks) we found a higher RMSE with

LPSVD(CR) than with the other methods. This finding, identical for every combination. Therefore, the higher num-
ber of successful runs for both implementations of the newdemonstrated here for component 1, is similar for all multi-

plet components and for the overlapping peaks. The larger protocol than for the previously suggested one is due to the
better performance of the new IEP and HTLS. The databias for the LPSVD(CR) amplitude estimates can be seen

from Fig. 7. From this it is obvious that the outside compo- enhancement by IEP and the parameter estimation by HTLS
lead to both a higher percentage of successful runs and more-nent of the triplet (peak 1) is underestimated (which also

applies to the other outside component 3) . In contrast to accurate parameter estimates. So their combination with
LPSVD(CR) has two beneficial effects.this, the middle component (peak 2) is overestimated (not

shown here) . From our findings, this appears to be a general This can be seen in Figs. 9 to 11 where the RMSE of the
parameter estimates for one side peak of the b-ATP triplettrend for the nonenhanced LP-based methods LPSVD,

LPSVD(CR), and LPTLS. (component 1 or 3, respectively) is shown. Again, this can
be considered representative for other multiplet peaks, too,The damping factor estimates are generally better for

EPLPSVD and LPTLS than for LPSVD(CR), as shown in as those results are very similar. For the amplitude estimates,
the lower RMSE obtained by the new combinations ofFig. 5 for peak 2. Only at noise level 25 does LPSVD(CR)

perform better than LPSVD. The findings concerning the LPSVD(CR) / [IEP or IEP(Re)] / HTLS is evident in
Fig. 10. This RMSE is significantly lower than those for thedamping factors are again similar for all peaks. As amplitude

estimates are most important in spectral quantitation, the combination of LPSVD(CR) / EPLPSVD and for
LPSVD(CR) alone (we again emphasize that the exclusionbias of the parameters is shown only for the amplitude of

peak 1 (Fig. 7) . of unsuccessful runs is the reason why RMSE values at noise
level 25 may drop below the Cramer–Rao lower bounds) .Summarizing, we can state that LPSVD(CR) reliably de-

termines the correct number of spectral components, thus Figure 11 displays the RMSE of the damping factor esti-
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407CONTINUOUS REGULARIZATION IN ANALYSIS OF MRS DATA

FIG. 9. MC study 2: RMSE frequency for peak 1 of the simulated 31P FIG. 11. MC study 2: RMSE damping factor for peak 3 of the simulated
signal for the methods mentioned in Table 2. 31P signal for the methods mentioned in Table 2.

mates for peak 3. Here the improvement obtained by the Also for the frequency (Fig. 9) and phase estimates (not
two new implementations, compared to LPSVD(CR) / shown here) , the RMSE is at least equal to or smaller for
EPLPSVD, is evident as well, although less pronounced than the new combinations than for LPSVD(CR) / EPLPSVD
for the amplitudes. As with the amplitude estimates, the and LPSVD(CR) alone. Especially the frequency estimates
difference between the two new implementations is only of all methods lie close together. The new implementations
marginal. It seems that the replacement of the data points generally show a smaller bias than LPSVD(CR) /
in IEP(Re) has no big influence on the parameter accuracy EPLPSVD. The reduction in the bias is even more significant
for this particular signal. Taking the plot of the successful in comparison with LPSVD(CR) alone. This improvement
runs into account, there even seems to be a slight advantage is clearly visible for the amplitude estimates, shown here for
for IEP without data replacement, but, as mentioned, the peak 3 (Fig. 12).
differences are only small. The higher percentage of successful runs for the combina-

FIG. 12. MC study 2: Bias amplitude for peak 3 of the simulated 31PFIG. 10. MC study 2: RMSE amplitude for peak 3 of the simulated 31P
signal for the methods mentioned in Table 2. signal for the methods mentioned in Table 2.
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FIG. 13. Result of parameter estimation with LPSVD(CR) for real-world in vivo 31P signal from human calf muscle. From bottom to top: FT spectra
of original signal, reconstructed signal, and residual signal.

tions of LPSVD(CR) / [IEP or IEP(Re)] / HTLS implies signals present substantial difficulties for parameter estima-
tion. We conclude that LPSVD(CR) reliably determines thethe inclusion of more difficult runs for parameter estimation.

Taking this fact into account, these new analysis schemes number of spectral components. Furthermore, estimation of
the spectral parameters is possible. In particular, RMSE val-demonstrate a better performance than the previously sug-

gested combination LPSVD(CR) / EPLPSVD. ues for frequency and phase estimates benefit from the use
of continuous regularization. For more-accurate parameter

Results for in Vivo 31P Signal estimation a combination with other methods is suggested.
Here, by determining the number of components,The real-world in vivo 31P signal from human calf muscle

LPSVD(CR) offers the possibility for fully automated data-was chosen to illustrate the capability of LPSVD(CR) to
analysis schemes. After having determined the model orderquantify a measured signal. Figure 13 shows the results of
with LPSVD(CR), a more-accurate parameter estimation isthis quantitation as performed with the MRUI software pack-
best carried out by HTLS preceded by a recently presentedage. The FT spectra of the original signal, the reconstructed
improved enhancement procedure. The new, fully automaticsignal, and the residual between reconstructed and original
implementation LPSVD(CR) / [IEP or IEP(Re)] / HTLSsignal are displayed. It is evident that all signal components
performs significantly better than combinations of a similarwere evaluated accurately using 256 data points and a nearly
structure previously used. They have a higher percentage ofsquare matrix. The ATP triplet and doublets are well re-
good runs and lower RMSE values for the parameter esti-solved, leading to a residual that contains nearly only noise.
mates. Finally, these new methods can be easily used viaApparently, one nonsignal component had been included by
the MRUI software, which lowers their application thresholdthe program, near 12 ppm. However, as this fitted peak is
even more.very small (order of the noise, much smaller than any of

the other fitted peaks) , and lies sufficiently far outside the
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